Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(12): 101298, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38016480

RESUMO

SARS-CoV-2 mRNA vaccines elicit humoral responses in children that are comparable to those in adults. However, early-life T cell responses are distinct from adult ones, and questions remain about the nature and kinetics of mRNA vaccine-induced T cell responses in children. We report that Pfizer BNT162b2 mRNA vaccination elicits a significant antigen-specific CD4+ T cell response in the ≥12-year-old cohort. This response is weaker in magnitude in the 5- to 11-year-old cohort and is not improved by a higher vaccine dose (Moderna mRNA1273, 100 µg), suggesting distinct developmental programming that may underscore early-life T cell immunity. Increased effector phenotypes of antigen-specific T cells in younger children correspond with elevated anti-receptor binding domain antibody levels, albeit at the cost of memory generation. These studies highlight aspects of age-specific adaptive immune responses and the need for careful consideration of priming conditions including vaccine dose and adjuvant in the pediatric population.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Adulto , Humanos , Pré-Escolar , SARS-CoV-2/genética , Vacina BNT162 , COVID-19/prevenção & controle , Linfócitos T , RNA Mensageiro/genética
2.
Immunohorizons ; 6(6): 366-372, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732333

RESUMO

Resident tissue macrophages (RTMs) develop from distinct waves of embryonic progenitor cells that seed tissues before birth. Tissue-specific signals drive a differentiation program that leads to the functional specialization of RTM subsets. Genetic programs that regulate the development of RTMs are incompletely understood, as are the mechanisms that enable their maintenance in adulthood. In this study, we show that the ligand-activated nuclear hormone receptor, retinoid X receptor (RXR)α, is a key regulator of murine RTM development. Deletion of RXRα in hematopoietic precursors severely curtailed RTM populations in adult tissues, including the spleen, peritoneal cavity, lung, and liver. The deficiency could be traced to the embryonic period, and mice lacking RXRα in hematopoietic lineages had greatly reduced numbers of yolk sac and fetal liver macrophages, a paucity that persisted into the immediate postnatal period.


Assuntos
Macrófagos , Saco Vitelino , Animais , Diferenciação Celular/fisiologia , Fígado , Camundongos , Baço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...